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This paper combines a structural approach by deriving a turbulent coherent structure—which we call
an eigenlet—as an eigenfunction of the Navier-Stokes equations, with a new (curl-type) eddy viscosity
model (which is more representative of intermediate scales than the classical Boussinesq eddy viscosity)
to describe a fully developed turbulent mixing layer without using any empirical input. This result is
achieved by invoking the self-consistency condition that the mean flow and the eigenlet have the same
spread angle. Using self-similar variables and the modeled equations, we obtain the mean flow and the
eigenlet. Several flow features, such as Reynolds stress, mixing layer spread and inclination angles, and
the average structure passage frequency have been calculated; these results are in good agremeent with

experimental data.

PACS number(s): 47.27.—i

I. INTRODUCTION

A viable theory of turbulent shear flows remains a ma-
jor challenge despite numerous pursuits, particularly nu-
merical and experimental. Studies of quasideterministic
coherent structures (CS) in a number of near-wall and
free turbulent shear flows have shown that CS contribute
significantly to turbulent transport and, being sensitive to
external forcing, permit control of turbulence phenomena
such as heat and mass transfer, combustion and chemical
reaction, and drag and aerodynamic noise [1]. Unfor-
tunately, this knowledge has so far found virtually no
direct use in developing or advancing theoretical tools.
Lumley proposed that CS can be considered as eigenfunc-
tions of a linear operator based on the velocity correla-
tion tensor (determined from experiments or numerical
simulation), and developed a theory using proper orthog-
onal decomposition (POD) [2]. The advantage of using
POD lies in minimizing the number of basis functions
needed to approximate a turbulent flow. This method
has been applied, in particular, to generate a dynamical
system of ODE’s for eigenfunction amplitudes and study
the bursting phenomenon in near-wall turbulence.

In our approach, we view CS as a compact eigensolu-
tion of the governing equations; we term such localized
eigenfunctions as eigenlets. An unusual feature of the
eigenlet is that it is an eigenfunction of a nonlinear
boundary-value problem which decays as t—+o. The
eigenlet u,(¢) is a single impulse satisfying homogeneous
boundary conditions and the Navier-Stokes equations
(NSE’s) or some modified form of NSE that accounts for
interaction of such impulses. This modification is neces-
sary since in a viscous flow a solitonlike solution can exist
only for some specific Reynolds numbers (such a
modification was done in Refs. [3,4]). However, the prob-
lem may have a continuous spectrum when solutions ex-
ist for some range of Re. We show that such a situation
arises in the mixing layer case, where the presence of a
continuous spectrum simplifies the problem.

Note that an eigenlet is not a basis function. A repre-
sentation of a turbulent signal, e.g., a time series of a fluc-

1063-651X/95/52(3)/2559(10)/806.00 52

tuation velocity component at a fixed point, is given by

u()=3 A,u, : (1)

where u, are the given basis functions (usually eigenfunc-
tions of some linear operator, e.g., harmonic functions),
and A, are random coefficients. The simplest eigenlet
tion is

u()=3 ug(t —t,), @)

where u,, is the eigenlet centered at a random instant ¢,.
Equation (2) contains no amplitudes A4, because the
eigenlets u ., are determined along with their intensities.
The flow pattern in Fig. 1 (an instantaneous snapshot
of the transitional region of a mixing layer from Brown
and Roshko [5]) motivates our study of a single structure
in a comoving frame of reference without considering its
interaction with neighboring structures. The problem of
deriving such a structure in an inviscid fluid has a long
history starting from Prandtl [6], and was studied numer-
ically (Fig. 2) using discrete vortices and subsequent
rediscretization [7]. Using integrodifferential equations,
Sadovsky and Taganov [8] obtained an exact solution for
the velocity field of a spanwise roll (Fig. 3). The max-
imum spiral thickness (across center) is found to have a
growth rate of 0.18(U;-U,), where U, and U, are the
velocities of the two streams. Such a linearly growing
rolled-up structure may appear to be inadequate for
describing the mixing layer, since vortical interactions

FIG. 1. Structures in mixing layer [4].
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FIG. 2. Point vortex model for single structures [5].

(such as pairing) play a significant role [9,10]. These is-
sues may be resolved using a more realistic model which
explicitly accounts for these interactions. As a first step,
we assume that the mixing layer spread can be deter-
mined from single growing rolled-up structures. In reali-
ty, structures evolve in a fine-scale turbulent back-
ground; note that Re also increases with x. This
motivates us in this paper to consider a single structure in
a turbulent medium. The turbulent background may be
represented by an eddy viscosity (a nonlocal characteris-
tic of the flow).

The self-similarity of a turbulent mixing layer follows
from the fact that the problem has no inherent length
scale. Therefore, any measure, e.g., thickness, should be
proportional to the distance from the mixing layer origin
with only one dimensionless proportionality factor—an
empirical constant. This constant can be estimated from
the growth rate of a single turbulent structure (in a frame
fixed with the structure) if one assumes that the mixing
layer also spreads at the same rate. Using the structural
approach, we develop a model which is capable of calcu-
lating such an empirical constant in the mixing layer.

We begin our description of the turbulent mixing layer
by proposing a curl-type model of the eddy viscosity. We
assume that the mean flow and the structure (eigenlet)
spread at the same rate, so that to maintain self-
consistency the same eddy viscosity acts on both the
mean flow and eigenlet. Note that this assumption will
be less accurate for the classical Reynolds stress-based
model, since, in the classical model, the eigenlet will con-
stitute a larger contribution to the eddy viscosity than
smaller scales; thus the eddy viscosity for the mean flow
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FIG. 3. Single inviscid structure [6].
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in a Reynolds stress approach would have to be larger
then that for the eigenlet. Since a curl-type eddy viscosi-
ty is more representative of intermediate scales, our as-
sumption of the same eddy viscosity for the eigenlet and
mean flow is reasonable. We find that our curl-type eddy
viscosity gives results which are in better agreement with
experimental data than the Boussinesq model.

Using this approach, the mean flow is determined, and
its stability is investigated. Following this a single tur-
bulent structure compatible with the mean flow is ob-
tained for which several characteristics such as its mean
velocity, Reynolds stress distributions, and spread angle
are found; finally, we compare these results with available
experimental data.

II. CURL-TYPE EDDY VISCOSITY MODEL

The simplest (classical) model due to Boussinesq intro-
duces a scalar eddy viscosity depending, in general, on
time and space coordinates and some integral flow pa-
rameters. Starting from the NSE,

d; dv; "—lai—}-vAv- d; —0

o Uax,  poax P

if we put v;=V;+v/ and p=P+p’, where V; and P are
the time-averaged velocity and pressure, then the Rey-
nolds equations for the averaged fields are

/v, 3V,
+vAV,; — —=

! ox;  Ox;

av; av;
Wy 1o
ot ox; p Ox;

(3)
Introducing the Boussinesq eddy viscosity vg,

— 1,12,
2vpS,; =1v"%8;; —v/v] , (4)

where v’2=m and S;;=3[(dV;/0x;)+(3V;/dx;)], we
obtain

v, v, 1 0P, _dvpgS;) 3V,
+V—=———"+2 , —=0,
ot 7 ox; p Ox; ax; ox;
— (5)
P,=P+v'?,

where v is the molecular viscosity, v is the total viscosi-
ty, and vyp =v+wvp.

Thus the problem is reduced to finding an equivalent
laminar viscous flow, with an effective viscosity v g,
whose velocity field is the same as the averaged turbulent
one.

Relations (4) have well-known drawbacks. Conflicts
arise, for example, in any parallel flow where (4) yields
vi2=v,2=0,% this demand of isotropy is definitely wrong
for a one-dimensional channel flow. It is well known [11]
that the eddy viscosity, in principle, should be a fourth
order tensor. However, a scalar eddy viscosity, being
very convenient, is used even in modern semiempirical
approaches.

Here we present an alternative definition of the eddy
viscosity. The NSE can be written as
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% +gradh +o Xv=vAv=—vcurle , h=p +pv7 .
(6)
Using o=Q+®', h =H +h’', and averaging (6) yields
gradH +QXV=—vycurlQ—o' XV’ . (7)
Now we propose that
o' Xv' =v,curlQ , (8)

where v, is a vorticity-based eddy viscosity; we may give
it a simple name: vortiscosity. This relationship is simi-
lar to that of Taylor’s theory of vorticity transport [12],

but the left hand side of (8) is not the same as div(v;v;)
used in Taylor’s theory. Note that (8), containing a
correlation between two vectors, is frame invariant.

Applying the curl operator on each term of (7), the
equation for averaged vorticity becomes

39, v, 5 30, 23Q,

Rt SPN —_9 el j
jaxj J dx;  Ox; ox; 0x;

> (9)

VTo
i

where v, =v-+v,. For the more general case of an un-
steady large-scale motion with a turbulent background,
we assume that Eq. (7) can be generalized to

av; av; 1 P av;

a  Jdx;  pox; TV, 5-=0. 10

Introduction of vorticity-based eddy viscosity gives just
three scalar relations from (8), unlike the six relations ob-
tained from (4). When v, =const, (8) produces a condi-
tion, namely div(@’ X v’')=0, which is not satisfied in gen-
eral and is a limitation of this model.

Physically, the difference between models (4) and (8) is
as follows. First of all, it is apparent that in general,
while vy is dominated by large scales, v, is dominated by
intermediate ones. In incompressible viscous flows
without body forces, momentum and vorticity cannot be
generated inside the flow domain; vorticity can,be pro-
duced only at the walls. This statement for a time-
averaged velocity field is, generally speaking, incorrect
because of mean momentum transfer by turbulent fluc-
tuations. Equation (4) suggests that the generation of
mean momentum by the eddy viscosity is not possible,
while model (8) disallows such a generation for vorticity
fields. This statement follows clearly from (5) and (9).
Mathematically, the difference between (5) and (10) is
that in (10) the variable eddy viscosity v, appears out-
side the Laplace operator in contrast to (5). Comparison
of (5) with (10) gives vy, if vy, and V; are known. If vy
is known, then Reynolds stresses can be found using (4).
We get

a( VTBS' ; )
2—Tj”— =vrAV; ,
from which we obtain

Vg

2 S+ (vrg —vre)AV; =0 . an
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If v;5 =const, then v5 =vr,, Which is generally not val-
id. Note that (11) is equivalent to a system of equations
for only one variable vy, and these equations can be in-
compatible. To avoid this difficulty, (11) is used only for
the principal velocity component V; =U,.

Thus, with the help of the vortiscosity model, the prob-
lem for turbulent flows is reduced to a modified form (10)
of NSE’s where viscosity (in general, a function of space
coordinates and time) is placed before the Laplace opera-
tor. Now we use this model to describe an averaged tur-
bulent field by studying its linear stability and calculating
an isolated large-scale vortex. For this, the well-known
similarity features of turbulent motion will be utilized,
which makes our analyses easier.

III. SELF-SIMILAR VARIABLES

With the spatially developing mixing layer in mind, we
now use the two-dimensional (2D) version of NSE’s in
polar coordinates (r,¢) with the origin » =0 (see Fig. 4):

av, v, V,aV, Vi
+v, e

ot ar r 0d¢ r
__139pP 19 [ 8V, | ¥
=———+v, |5 |r -

p or rdor | Or r?
3V, 2 3V,
r29¢* r* 93¢ |’

14 514 V, oV, V.V
¢ +v, 6 . ¢ ¢ __ ¢

ot or r 9¢ r
—_1ap 113 | 9| ¥y

prdg “|ror or r?
Vs 23 (12)
ra¢> 12 3¢ |’

a(rv,)  aV,

I, + _ T =

or 7

Note that here we neglect molecular viscosity. In the
idealized mixing layer when the molecular viscosity is

omitted, the difference U,=U, — U, is the only velocity
scale. The absence of a length scale in the problem leads

s 7 6 &

FIG. 4. Sketch of flow.
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to a similarity conjecture. In particular, the eddy viscosi-
ty, with dimension of that of velocity times length, must
be proportional to the distance from the origin, i.e.,

vo=vUorf($), (13)

where f(¢$) describes the angular distribution of the eddy
viscosity that will be specified, and the dimensionless
coefficient ¢ serves as an inverse turbulent Reynolds
number: Re=1/y. Now we introduce the dimensionless
variables

_ Uyt e
£=In N y TET ,u——UO,
(14)
v:l/j; q= P
Uy’ pUd
Noting that
9_Ua a3_3__a8_,
¢ r or’ 9r 3 or °
and substituting the variables in (12), we have
dou du
— 4+ uD e 2
ar u “+”a¢ v
d%u dv
=—Dg+yf |Du—u+——2—1|,
qt+vf a8 a¢]
dv v
_+ —_
ar uDv+va¢ uv
2
=99 4 lphy—y+ 20,0 (15)
Du+u+§—;7:0.
We will use the spanwise vorticity

Q,=(1/r)([8(rV4)/3r]—(0V, /3¢)) transformed to the
nondimensional function
_r v du
Uy 9§ 3¢

(16)

Eliminating the pressure terms from (15), the dimension-
less equation for vorticity becomes
o0 o

_57+u(DQ_Q)+U—a—(;

=y |rp2a—pa)+ 3 |32 || an

9% |” o4

Now we proceed to find solutions for the mean flow.

IV. MEAN FLOW

The mean velocity depends on angle ¢ only and not on
£. Using the subscript zero for the steady solution and
considering D =0 in this case, from (15) we obtain

vouo—vo=vfluy —ug—204), ug+vy=0, (18)

go=vf(wy —vo+2uy) . (19)
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In this section the prime denotes differentiation with
respect to ¢.

Note that Egs. (18) for velocity components u, and v,
are decoupled from (19). System (18) is of third order;
therefore only three boundary conditions for velocity are
required. If we were to use Eq. (17) for Q along with (16)
and the last equation in (15) for the basic flow, we would
obtain a fourth order system which requires four bound-
ary conditions. Note that while obtaining (18), pressure
is considered to be independent of £. In general, when
the velocity is independent of x, Egs. (15) allow the addi-
tive term C& (with C=const) in a solution for pressure.
However, this would mean that pressure becomes infinite
when » — o0 ; to avoid this C must be zero.

Thus, for a boundary value problem in the interval
@1 =¢=¢,, we use two conditions on the high-speed
boundary, ¢ =¢,, and a third condition on the low-speed
boundary, ¢ =¢;. Such a choice is reasonable since the
high-speed flow is given and entrainment from the low-
speed side is a consequence; an entrainment velocity U, is
not known a priori and must be found.

In the following we study the mixing layer from a
backward-facing step (Fig. 4). The boundary conditions
are

ug=-—1;
and (20)
V=0 at ¢=—7/2,

vo=0 at ¢=1

the velocity u, at ¢ = —m /2 must be determined. Such a
problem formulation (20) with a large angle is not compa-
tible with the boundary layer approximation, and we
therefore use the entire set of Egs. (18).

We apply two models for the eddy viscosity depen-
dence on f: (a) uniform distribution f =1, and (b) propor-
tional to the averaged vorticity, f=|Qgl/|Qq|n. [be-
cause of the multiplier ¥ in (13), f(¢) may be normal-
ized]. Note that case (a) assumes the eddy viscosity to be
a function of coordinate only and not the velocity field
(the Prandtl-Bonsinesq model), while in case (b) it de-
pends on the mean vorticity (Prandtl model). Equations
for Q that follow from (16) and (17) are

Qo=vo—ug=vg +vg , (1)
YfQ=v,Q, . (22)

Case (a) is related to Prandtl’s hypothesis that the eddy
viscosity in the mixing layer is proportional to the veloci-
ty difference and the width of the mixing zone, the latter
being proportional to the distance from the origin. A
disadvantage of such a model is that the eddy viscosity
considered does not depend on ¢ and is not zero outside
the mixing zone. However, this disadvantage is not cru-
cial since the basic flow is uniform outside the mixing
zone, and, therefore, the value of the eddy viscosity there
is of no consequence. When f=1, Egs. (21) and (22)
differ from those used by Gortler [12] (with the boundary
layer approximation) only by the presence of v, on the
right-hand side of (21). This difference in the equations
disappears as Re-— o; however, the results remain
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different even in this limiting case due to different bound-
ary conditions. Gortler applied the condition v,=0 at
¢=0, that made the problem symmetric with respect to
¢. We use conditions (20), and consequently our solution
is not symmetric.

Model (b) for the eddy viscosity v, in Prandtl’s hy-
pothesis,

_,|4U;
v, =1 ,
dy
where U, is the longitudinal velocity component.

Tollmien [9] used this formula for the mixing layer prob-
lem with boundary layer approximation.

In our problem, mixing length 1 is proportional to r,
and instead of |dU, /dy| we use VI, /2, where I, is the
second invariant of the velocity gradient tensor and is
given by
2

2
av, av, V av,
I1,=4 _‘?L__"_i_l_
or ar r r 9¢
2
U, |
=2 |—| 2.

Therefore, Prandtl’s formula reduces to our case (b) as
follows:

v, =12U,| Q| /7 . (23)

Using f=|Qq|/|Q|nax and Re;=Re|Ql ., in (22), we
obtain

[Q0| Qy=Re vy . (24)

In the mixing layer, Q, is negative, i.e., Q= —[Q,|.
Using this in (24) and assuming that Q, is nonzero, (24)
reduces to Qy= —Re,v,, and with the help of (21), to

vy +vo+Rewy,=0.
After solving for v, the vorticity ), has the form
Qy=C,exp(B,¢)+exp( — B¢ /2)[C,cos(B,4)
+Cysin(By4)],  (25)

where B, is the unique real root of the equation
B*+B+Re; =0, and B,=(1+3B2/4)'"2,

Because of the presence of the exponential function in
(25), it is impossible to choose constants C,, C,, and C,
so as to localize vorticity in a thin layer. For this one can
I
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combine (25) for some interval ¢;<¢ =<¢, with Q;=0
[also a solution of (24) that corresponds to a uniform
flow] outside the interval; values of ¢, and ¢, are zeros of
(25). Starting from ¢=0 with some tentative vy, v, and
v, and integrating (24) in the negative and positive direc-
tions up to the first zeros of Qy(¢), we find ¢; and ¢,.
Then vy, vy and vy are calculated with the help of a
shooting procedure to satisfy wuy,=cos(¢) and
vo=—sin(¢,) [ie, U,=1 and U,=0] at ¢=¢,, and
U, =uqycos(¢)—vysin(¢p)=0 at ¢=¢,. Notice that the
vortex boundaries ¢; and ¢, can also be found for prob-
lem (a), if one assigns some threshold (cutoff) value of Q,
at the boundaries (this value €, is chosen as
Q,=0.019Q,,). The difference

Ap=¢,— ¢, (26)

will be used in the following.

V. STABILITY

To study the stability of the basic flow we need to
derive equations for disturbances. For this, we use the
representation u =uy(d)=uy(¢,&,7); similarly for v, g,
and . Variabies (14) make the evolution problem for
(15) rather unusual because the first two equations in (15)
are both second order with respect to 7. In addition, the
linearized equations (15) do not allow an exponential
solution in 7 as the initial NSE does with respect to . To
avoid these difficulties and simplify calculations we apply
the local approximation that Ar /r is a small parameter,
with Ar as a characteristic length scale of u,, and r; as
the distance from the origin. This simplification is simi-
lar to the parallel-flow approximation used in stability
studies of mixing layers [10]. An advantage of our ap-
proach in comparison with the quasiparallel approxima-
tion is that we account for the nonparallel nature of the
basic flow in the leading order of the expansion with
respect to Ar/r,. This allows us (i) to describe vortex
distortion induced by the nonparallel nature of the flow,
and (ii) to avoid a major drawback of the parallel ap-
proach which fails to satisfy the boundary conditions for
the basic flow perturbations (i.e., decay of the perturba-
tions in the transverse direction). Formally, the
simplification is achieved by applying r=U,t /r, [com-
pare with (14)] and D=3/3¢ in (15)-(17). For a pertur-
bation propagating downstream with velocity C we use
0/9t=—C9/3§. Then from (15) the nonlinear distur-
bance equations are

aud aud auo aqd a2ud azud avd aud aud
—C — —_-a __ - — % 4 f=p2__, 4 _ ., 4
(uo ) ag +U0 a¢ +Ud a¢ 2000d+ aé_ '}’f a§2 ud+ a¢2 2 a¢ Vg— Uy a§ Vg a¢ 5
avd aud aqd 820d azvd aud aud avd
o— —_— ._+____. —_—— = —_— P——
(uy—C) T +v, Y vf 28 vyt FYe 3% Va g T Hd 2 27
aud aUd
_+ —
a§ ud+ a¢ 0
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To find an eigenlet we must obtain a solution of (27)
satisfying appropriate boundary conditions. We have to
obtain a nontrivial solution for some (eigen)value of pa-
rameter C; parameter ¥ remains to be determined.

We begin with the problem of linear stability for the
mean turbulent mixing layer. We reconsider the linear
stability of the mixing layer with the Gortler-Blasius
profile, studied in a number of works (see [14]), by apply-
ing our nonparallel approach and the new model of eddy
viscosity.

To study infinitesimal disturbances we linearize (27)
and neglect terms on the right-hand sides. Then the nor-
mal mode for disturbances can be applied:

(14,04,94,2a)=[11(8),0,(4),4,(¢),Q,(4)]
Xexplia(§—Cr)]+c.c. (28)

Here C=C,+iC; is the complex phase velocity, and c.c.
denotes the complex conjugate. Substitution of (28) in
(27) yields

ialug—Clu,+(ug—2v9v; +ovoui+iag,
=yfluy —(1+a®)u,—2v}],

|
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ia(ug—Cl, —iavgu,+q;
=yflvy —(1+a*)v,+2ui], 9
ku,+vi=0, k=1+ia.

Differentiating the last equation, substituting v;’ in the
second equation, and using Q;=kv,;_u due to (16), we
reduce (29) to the fourth-order system

YfQ1=vo(Q—kv,)—ialug—Cu,
—(u(’)—zvo)vl_iaql ’
q'1 =»yf(ia—-1)01+iavdu1_ia(uo_c)l)] ’ (30)

uy=kv,—Q,, vi=—ku,,

with boundary conditions
v =0,=0at ¢=7 and ¢=—7/2. (31)

In the case of model (b) for eddy viscosity, we assume
that the disturbance velocity field is potential in the re-
gions —7<¢<¢* and ¢** <P =, ie, Q;=0. It then
follows from (30) and (31) that

v, =C;sin[k(¢+m/2)] and u,=—C,cos[k(d¢+m7/2)] for —m/25Sd=¢*,
v,=C,sin[k(¢—m)] and u,=—C,cos[k(¢p—m)] for ¢**<p=m .

Therefore, boundary conditions (31) can be replaced by

Q,=0, cos[k(¢p+m/2)]v,+sin[k(¢+7/2)]u, =0 at $=¢*
Q,=0 cos[k(¢p+m)]v, +sin[k(¢—7)]u;=0 at p=¢** .

Similar inviscid conditions were used in the stability
analysis of a laminar mixing layer using a quasiparallel
approximation [13].

The neutral curves for model (a) are shown in Fig. 5.
Usually, the mean flow scale is characterized by the local
momentum thickness

/2

o=r[" L U(1=Ud¢ . (32)
Therefore, instead of the (turbulent) Reynolds number
Re=1/y, we use the value of R ,=r /0 for the abscissa to
allow comparison with experiments [15]. The limiting
values of a0=0.48 and w6/U,=0.28 shown in Fig. 5
coincide with known results [13]; however, for the experi-
mental turbulent momentum thickness, a6 and w8/U,
are remarkably less than the limiting values (see section T’
in Fig. 5). The cross shown in Fig. 5 corresponds to the
maximum value of aC; for R;=25.6; correspondingly,
00/Uy,=0.15. We find that the results from model (b)
are quite close to those obtained by model (a).

VI. EIGENLET FOR A TURBULENT
MIXING LAYER

Our stability analyses show that the mean velocity field
of a turbulent mixing layer is unstable, and consequently

|
structures will be generated in a turbulent background;
this serves as a basis for obtaining a turbulent eigenlet.
We know that an inviscid eigenlet exists, but the solution
for finite Re is unknown. Usually, a solitonlike solution
of the NSE exists only for a particular Re. The existence
of a turbulent eigenlet solution for some range of Re
means that the problem has a continuous spectrum. This
is not surprising because (17) is of second order in 7. In
the present work we prefer solving (17) in a frame moving
with the structure. Thus, for the temporally developing

0.5 L L - 0.5

0.4 -4 0.4

@8 034 03

T
0 425 10 20 30 40
Re

FIG. 5. Neutral curves for turbulent mixing layer.
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mixing layer formed by two oppositely directed streams
with velocities = U, (Fig. 3), we start from the equation
for the stream function ¥ in the Cartesian frame (x,y):

0AY | d¥Y 0AY  3¥ JAVY

o Ty ax ax gy VoMMV (33)

The eddy viscosity model (13) is then modified to
vo=BUgt , (34)

where B=const; i.e., we use model (a) for eddy viscosity
to simplify the analysis. This modification is needed be-
cause the flow is uniform in the streamwise direction, and
the characteristic length (thickness of the mixing layer) is
proportional to Uyt. The relationship between 8 and ¥
will be established below.

We introduce the following transformation for depen-
dent and independent variables:

=G 1T T 0= U\Iz;t ’
and use them to transform (33) to
By WY Yy, By, 0y
or oy 9¢& & Iy 877
=BAAY , (35)

where A=(32/3&?)+(3%/37%). A steady solution of (35)

corresponds to an unsteady self-similar solution of (33)
with the velocity components

W _, W W

=—=U , =————=—-U 36

Ux T ay * an Oy ax ® 9 (36)

It is convenient to use the following symmetric boundary

conditions:

——‘I!j—“ , Q‘ﬁ:l at n=-+ o and Y =0,

% o % (37
Y _ -

an 1 atqy o0

It is evident that the problem (35)-(37) has a solution
that is independent of 7 and &.

Yo= [ "erfln/vV2Brdn , (38)

which describes turbulent diffusion of an initial vortex
sheet and yields the velocity distribution

1 y

f|—
=U,er B Ut

v,=0. (39)

’ y

One can see that this solution corresponds to a tangent
jump of velocity at S=0. Relation (39) is considered a
trivial solution, and our goal is to find a nontrivial solu-
tion that represents a single vortex as a localized distur-
bance of the vortex sheet, i.e., an eigenlet.

To develop an effective algorithm for a numerical solu-
tion of the problem, we consider an integral sequence of
(35). Denoting

=(,m), V= and Q=Avy,

9y _ 3y
on’ €
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Eq. (35) is rewritten in the form
%‘: —BAD— B —div[(V—1)0] . (40)

We represent the motion as a superposition of the trivi-
al solution and a disturbance: V=V,+v and Q=Q,+.
Then the equation for disturbances follows from (40),

2—‘;’—[3/3@ B—div[(Vo—r)a+Qp+av]. @1
Integrating (41) in region S with boundary 1, we get

= fl Bg—c:—n-(vo—r)cb-i-ﬁov—i-z?)v dl . (42)

For localized disturbances, the right-hand-side integral
becomes zero for a sufficiently large S, and this implies
that the disturbance circulation T decays like
I'=TI(0)exp(—7). Therefore, one does not need to be
concerned that an initial state has the same global circu-
lation as the trivial solution, because a difference in dis-
turbance circulation (I'), if any, decays exponentially dur-
ing the establishment process. The results of our calcula-
tions are given in Sec. VII.

VII. DESCRIPTION OF STRUCTURE
CHARACTERISTICS

In the following, we summarize results obtained from
our model. First of all, we discuss the relation between
the spatial and temporal problems, which are assumed to
contain the same eigenlet. Thus results to be obtained for
a spatial mixing layer are directly applicable to the tem-
poral case, with eddy viscosity (34). We use a frame mov-
ing with a velocity

In this frame, the relative flow velocity is
U—U=LU;—-U,)=U, at y=c, and U,—U
—HU,—U,)=—U, at y=—o0. Assuming in (13)
that rf (0)=x = Ut, we have
v=yU0Ut=7,U(2)—UQt=% yU%ii—m t, (44)
0

where m =(U,/U;). Comparison of (44) and (34) gives

1+m

— (45)

p=1

Let 8 be the characteristic vortex size growing according
to

d=oU_ t=0——x=0 1_mx (46)

U 1+m™ "’
where o =const.

Notice that Eq. (45) expresses eddy viscosity depen-
dence on m in full accordance with experimental observa-
tion [16], if we assume that 3 is independent of m. In the
present work, we consider only the case where m =0.
From Sadovsky and Taganov [8], for an inviscid single
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vortex structure, we find that o0 =0.36. The angle
A¢,=2arctan(o /2) , (47)

corresponding to o0 =0.36, is A¢,=0.356.

Knowing A¢,, we can estimate the eddy viscosity of
the mean flow if one assumes that A¢,=A¢ from (26).
For an inviscid flow the angle A¢, is finite and the boun-
daries are sharp; therefore it is natural to use model (b)
considered in Sec. IV.

Calculations show that the value A¢y,=0.356 is
achieved at ¢,=0.1154, ¢,=—0.2406, Qy;,=—4.45,
and Re=617. To compare these results with experimen-
tal data, we apply (23). Tollmien used / =cx and recom-
mended the experimental value ¢ =0.0246. Comparing
(23) with (13) we obtain y =c2|Qq| .- As y=Re !, we
find ¢ =0.0191. We can see that the experimental value
of the eddy viscosity exceeds the one obtained with an
inviscid approximation. Since it is more convenient to
use model (a) with f =1, we calculate the turbulent struc-
ture corresponding to this model. The self-consistency
condition for the temporal and spatial models requires
matching of two parameters: vy=2B and
A¢p=2arctan(o /2), from (44) and geometry. The boun-
daries of the vortex which determine A¢ and o are not
distinct for model (a). They were determined using the
cutoff (threshold) value of Q,=0.01Q_,,, so that we use
Q, to denote the value of Q on the boundary of the vor-
tex. Note that the boundary of the vorticity region in the
mean flow is also determined using the same cutoff. To
solve the whole problem we perform the following opera-
tions: (i) start with a trial value of y in (22); (ii) find
Ap=¢,—¢y; (iii) find B according to (45); (iv) solve prob-
lem (35); and (v) find o from the structure growth rate
and A¢, according to (47). The problem is solved if we
can find the y for which the equality A¢=Ad, is satisfied.

The numerical problem for (35) is studied in the rectan-
gle || <L, |&| £ 10L, for which the boundary conditions
corresponding to the trivial solution are satisfied. L is
chosen to be large enough so that the maximum vorticity
is independent of L. We begin our computations from an
initial field corresponding to a prediction based on the re-
sults of the inviscid theory, use a time step Az =0.01, and
terminate calculations when the solution attains some
asymptotic limit (after 1700 steps); this constitutes the
first run. The calculations are then repeated, starting
from initial distributions with larger and smaller distur-
bance amplitudes. It is found that in both cases the am-
plitude converges to the value obtained from the first run.

FIG. 6. Single turbulent structure (eigenlet).
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FIG. 7. Mean longitudinal velocity profile in the turbulent
mixing layer.

The vortex structure obtained is shown in Fig. 6, where
the isovorticity line as are depicted. The flow pattern is
in qualitative agreement with the inviscid solution (Fig.
3). The main difference is the smooth distribution of the
vorticity in the eddy viscosity model. The structure has
the following parameters: |Q|,,,=12.12, 8=0.001002,
Y =0.002004, Re=499, 0=0.472, and, according to
(47), A¢py=0.4364. The solution using model (a) (see Sec.
IV) is shown in Fig. 7 with experimental data [15] ob-
tained in a turbulent mixing layer. The independent vari-
able & used here is standard for representation of mixing
layer experimental data: {=(y —yqs)/x, where y,s is
the transverse location where U, =0.5. U, ({) is depicted
in Fig. 8. Although detailed U, ({) profile data are una-
vailable experimentally for the turbulent mixing layer,
this profile is in qualitative agreement with data obtained
in our laboratory [17]. In particular, U,(— o) (the en-
trainment velocity) value is found to be 0.038, which is
close to the experimental value of 0.032. Such results

0.04

0.03 1

0.02

0.01 A

UyO

-0.01

-0.02 t ; . 1

FIG. 8. Mean transverse velocity profile.
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FIG. 9. Reynolds stress profile.

cannot be achieved by the boundary layer approximation,
which gives a zero value. Our calculations provide a
momentum thickness 6=0.03917 which coincides with
the experimental value [15]; the corresponding Reynolds
number is R,=25.6. Another characteristic of a mixing
layer is 6, ;, the momentum thickness when integration
in (21) and (22) starts from the angle ¢ where U, =0.1.
We have 6, ;=0.0343r, while the experimental value is
0.035r. Yet another characteristic of a mixing layer is its
inclination angle ¢,5 corresponding to U,=0.5. In
Gortler theory, due to symmetry ¢, s=0. Our calcula-
tions give ¢, s=—0.0306, whereas the experimental
values vary [18,19] from ¢,35=—0.0473 to
¢o.s= —0.027, respectively.
Reynolds stresses are found according to (4),

v, N av,
ady ox

[

T=—0,0,=vp

and calculated using (11). Comparison with experimental
data [17] is shown in Fig. 9. Note that the use of bound-
ary layer approximation, F=wvzdv, /dy, overestimates
Tmax OY 20%. In addition to the mean flow, we estimate
the characteristic structure passage frequency f,, in the
mixing layer using results of stability analysis given in
Sec. V. Assuming that f,, corresponds to perturbations
with maximum aC;, we obtain w,,0/U,=0.15, where
®,, is the dimensional angular frequency. Using
®,, =27f,, we find a Strouhal number St=f, 0/U,
value of 0.0239, while the experimental value [20] is
0.024. Since 0 increases linearly with distance 7, f,, is in-
versely proportional to r according to w,, =aC,U,/r,
which follows from Eq. (28). Observations [20] confirm
these considerations thus justifying our stability ap-
proach.

Despite considering an ideal mixing layer ignoring
boundary layers on the exit walls, and making other sim-
plifying assumptions, our theoretical model provides re-
sults in satisfactory agreement with experimental data for
fully developed turbulent mixing layers.

VIII. CONCLUDING REMARKS

We have demonstrated the importance of structures in
a turbulent flow (a turbulent mixing layer) and showed
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that the knowledge about a single structure (eigenlet)
alone allows us to determine mean characteristics of the
entire flow without any empirical input. Eigenlets, being
localized hydrodynamic structures, bear some resem-
blance to elementary particles of physics. The latter con-
serve their shape during free motion and could be distort-
ed due to interactions, possibly giving rise to new parti-
cles. Also, a large-scale structure (represented by an
eigenlet) can change its shape and undergo a similarity
transformation, for instance. Growing mixing layer vor-
tices are an example of such a transformation.

In applied hydrodynamics, various turbulence models
have been developed containing empirical constants
which unfortunately are not universal. The present work
attempts to obtain such a constant for a turbulent mixing
layer using a structural approach.

The nonlinear winding process plays a dominant role
in structure evolution, causing a linear growth of the
scale, and is followed by strong interaction between struc-
tures (such as pairings). Subsequently, small-scale tur-
bulence arises which modifies viscosity and produces
secondary structures by instability. In this paper, we ac-
count for structure interaction indirectly by introducing
an eddy viscosity v,,. We therefore arrive at the theoreti-
cal model for the calculation of a single structure in a tur-
bulent medium. v, is found by imposing the self-
consistency condition that the mean flow field and the
structure have the save properties, such as eddy viscosity
and spread angle. To realize this, first we have proposed
a curl-type eddy viscosity model, and provided a solution
to the mean flow, using self-similar variables. Then a
linear stability approach is developed using self-similar
variables. Following this a single turbulent structure in
the mixing layer (an eigenlet) is calculated, and the mean
flow field, Reynolds stress distribution, and structure pas-
sage frequency are determined. We find these results to
be in good agreement with experimental data.

Although we have demonstrated our results by com-
bining turbulence modeling and structural approaches for
a turbulent mixing layer, we emphasize that such an ap-
proach may be extended to large Re flows including po-
tential or vortical outer flows, boundary layers, wakes,
and jets. The idea of self-consistency is likely also to be
useful for subgrid turbulence modeling. The appearance
of eddy viscosity is typically related with some cutoff
(which is necessary for any numerical calculation) of
small scales. Let us assume that we start with NSE (10)
where v,,=v, and also that we are able to estimate the
eddy viscosity field v, corresponding to the chosen
cutoff (using, for example, Kolmogorov’s formula or its
generalization). Then, we can use (10) (or some
modification of it) and repeat the calculations with the
viscosity field v, We can then repeat the cutoff opera-
tion and continue the process until we obtain the same
eddy viscosity field as that estimated. If we succeed, the
self-consistency condition is satisfied. In fact, we used
such a procedure in this paper for the mixing layer steady
flow.

The mixing layer case is simple in the sense that the
turbulence modeling needs only one constant. In order to
apply the structural approach in more complicated flows,
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where more constants may be involved, we may use
another turbulence model, e.g., k-€, to find the corre-
sponding dominant eigenlet. In the classical sense the
mixing layer theory is complete since we have determined
and characterized the mean flow field without involving
any empirical input. However, for more detailed features
of this flow, such as description of vortex pairing and
tearing, 3D vortex dynamics, rib formation, and vortex
reconnections, more sophisticated techniques would be
needed. One such technique is the structural-statistical
approach, which has been used for ODE’s displaying
chaotic behavior [3,4], and can, in principle, be extended
to turbulent flows.
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